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Direct methods for the solution of the discrete Poisson equation over a rectangle are 
commonly based either on Fourier transforms or on block-cyclic reduction. The relationship 
between these two .approaches is demonstrated explicitly, and used to derive the FACR(I) 
algorithm in which the Fourier transform approach is combined with I preliminary steps of 
cyclic reduction. Tt is shown that the optimum choice of I leads to an algorithm for which 
the operation count per mesh point is almost independent of the mesh size. Numerical 
results concerning timing and round-off error are presented for the N x NDirichlet problem 
for various values of N and 1. Extensions to more general problems, and to implementa- 
tion on parallel or vector computers are briefly discussed. 

1. INI'KODUCTION 

In a previous paper [lS], the author compared several direct methods for the 
solution of the discrete Poisson equation over an N x M rectangular grid, in terms of 
operation counts, storage requirements, speed, and accuracy. The methods con- 
sidered included FFT-based algorithms, block-cyclic reduction (Buneman’s 
algorithm), and FACR(l) algorithms, in which one preliminary step of block-cyclic 
reduction is used to halve either the number or the length of the Fourier transforms. 

In this paper we consider the FACR(I) algorithm, in which I preliminary steps of 
block-cyclic reduction are carried out, the reduced system is solved by the FFT method 
and the solution is completed by I steps of block back-substitution. Both the basic 
FFT method and Buneman’s algorithm are special cases of the FACR(Z) algorithm. 

With the optimum value of Z, the FACR(I) method is probably the fastest known 
numerically stable algorithm for solving the discrete Poisson equation over a rectangle; 
the algorithms of Lorenz [9] and Schroder et al. [lo] are possible rivals. 

Hackney [7] first introduced the FACR(1) algorithm, using I preliminary steps of a 
numerically unstable form of block-cyclic reduction, which nevertheless gave satis- 
factory results for small values of 1. Swarztrauber [14] used a stable cyclic reduction 
scheme based on Variant 2 of Buneman’s algorithm [2], derived the optimum value 
of Z, and showed that this gave an operation count asymptotically proportional to 
MN log,(log, N). 

In this paper we replace Variant 2 of Buneman’s algorithm by Variant 1 for 
the cyclic reduction and repeat Swarztrauber’s analysis under a rather different set of 
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assumptions and definitions. Again it is shown that for optimum I the operation count 
is asymptotically proportional to MN log,(log, N); however, it will be demonstrated 
that for practicable grid sizes the operation count is effectively proportional to Il/l_rs 
It will also be shown that the FACR(Z) algorithm arises quite naturally from a srudy 
of the relationship between the basic FFT and block-cyclic reduction methods. For 
simplicity we consider a rectangular grid (i,j): 0 < i < N, 0 <(I < icf3 with raix 
gridlength, and with Dirichlet boundary conditions on ali sides; the number of 
unknowns is thus (N - l)(&? - 1). We assume for the time being that N and M are 
both powers of 2. Furthermore, it will be assumed that the discrete Poisson equation 
is to be solved a number of times with different right-hand sides but with the same grid 
and boundary conditions; and that core storage is plentiful, so that we can reserve 
separate arrays for the right-hand side and the solution (to permit the use of Variant ! 
of Buneman’s algorithm), and can also precalculate an array of coefficients to be used 
in the solution of tridiagonal systems by Gaussian elim.ination. Extensions of the 
algorithm to other boundary conditions, arbitrary N and IQ7 and more stringem 
storage restrictions will be considered in Section 6. 

2. RELATIONSHIP BETWEEN FFT AND BLOCK-CYCLIC REDUCTIDN METHODS 

It is customary to refer to the FFT and block-cyclic reduction methods for solving 
the discrete Poisson equation as if they were unrelated; in fact the relationship bet?i;eea 
them is very close, as will be demonstrated here. 

Ordering the variables by rows, and defining 

the discrete Poisson equation can be written as a block-trldiagonal system 

where 

A= 

and x, = xfif = 0. (Nonhomogeneous boundary conditions at J = 0, M can be 
handled by xnodifying b, and b,,-, , and at i = 0: N by modifying the tirst and ias: 
components of each bj .) 
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We first set out the cyclic odd-even reduction and factorization (CORF) algorithm 
for solving this system as given by Buzbee et al. [2]. 

Define Ato) = A, bi”) = bj , 1 < j < M - 1. 
Then after Y reduction steps we have the block-tridiagonal system 

Xj-h + A(‘)Xj + Xj+h = j ,,“’ (1) 

involving only those values of j which are multiples of h = 2T, where A(?), b$‘) are 
defined recursively by 

AWfl) = 21- (&T))B (r > 0) (2) 

and 

for j = 2h, 4h,..., M - 212, where h = 2’. 
In particular, after k = (log, M - 1) reduction steps the system has been reduced 

to a single equation: 

for h = 2’2. The remainder of the system can then be solved by k steps of back- 
substitution, using decreasing values of r; at each step we use Eq. (1) to obtain xi 
for each j equal to an odd multiple of 2T, the solution having already been found 
for all j equal to even multiples of 2’. 

Two aspects of this algorithm are particularly worthy of note: first, the matrices 
AfT) fill in rapidly as r increases, but, as shown in [2], the computations involving A(‘) 
can be greatly simplified by using the factorization 

A(‘) = - fi (A + 2 cos e,“‘l> (r > 01, 
j=l 

where 0y) = (2j - 1) ~-jZ~+l. 
Second, as also proved in [2], the algorithm is numerically highly unstable, and 

therefore of little practical use. Buneman’s algorithm stabilizes the calculation by 
defining 

and computing pr) and q$y’ rather than bg”; all explicit multiplications by A(T) are 
thereby avoided. 

We now consider an alternative method of stabilizing the CORF algorithm. The 
matrix A can be factorized as 

A = S-l&!3 
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where S is the matrix representation of a Fourier sine transform; thus S is defined by 
S = (s.& where sij = (2/N) sin(ij z/N). (With this scaling, S-l = (N/Z)S.) .A is a 
diagonal matrix of eigenvalues of A, defined by A = diag(h, Y..i, X,v-l), where 
hi = 2 cos(j~/N) - 4. It is easy to show that 

where the diagonal matrices A(+“) are defined recursively by 

(1’0’ = .(q 
flcr+u = 2; _ (fly, I > 0. 

We can thus replace Eqs. (3), (4), and (1) by 

,,?+I) = j,ti + bj’$ - s--‘A (T)&-?@ 
3 jy > 

(r = 0, I,..., log, M - 2; h = 2T; j = 211, 4h,..., M - 2h), 

fk = log, M - 2, h = 27, and 

Xj = S-‘(Ll(T))--l S[bj(T) - Xj-h - Xj+hj ($I> 

(r = log, M - 2,..,, 1, 0; h = 2r; j = h, 3h ,...) M - h). 
We will not discuss the numerical stability of the algorithm defined by Eqs. (7)~(9), 

but rather note that it requires almost twice as many sine transforms (and their 
inverses) as necessary. If we first compute 

then the algorithm becomes 

(r = 0, I,..., log, M - 2; h = 2r; j = 2h, 4h,..., M - 2;2), 

jib = (pd)-lfp 

(k = logs M - 1, h = 29, 

iij = (py-1 [f$-’ - gimh -. $+J 

(Y = log, M - 2,..., 1, 0; h = 2’; j = h, 3h ,... - 5 M h), and &ally 

Xj = S-l?j, l<j<M---1, 

5Er/34/3-3 
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But the algorithm defined by Eqs. (lo)-(14) is precisely the “basic FFT” method, with 
the tridiagonal systems solved by (scalar) cyclic reduction. Thus the block-cyclic 
reduction method (stabilized by using the factorization of Eq. (6)) and the basic 
FFT method (with the tridiagonal systems solved by cyclic reduction) are equivalent. 
By the time the block-cyclic reduction method has been stabilized instead by 
Buneman’s algorithm, and the basic FFT method has been modified to solve the 
tridiagonal systems by Gaussian elimination, the two resulting algorithms appear 
quite different; nevertheless, as the above argument shows, they are very closely 
related. 

3. THE FACR(1) ALGORITHM 

Apart from considerations of stability, there is another motivation for factorizing 
ACT) using Eq. (6) rather than Eq. (5), for computing bsy’ during the reduction phase 
and xj during the back-substitution phase. Using the factorization of Eq. (5), multi- 
plication of a vector by A(‘) requires 2T+1 additions and 2’ multiplications per 
component, while multiplication by (AcT))-l requires 2 r+l additions and 2T+1 multi- 
plications per component, assuming that the tridiagonal systems are solved by 
Gaussian elimination using precomputed coefficients. Using the factorization of 
Eq. (6), on the other hand, involves a sine transform, multiplication by a diagonal 
matrix, and an inverse sine transform, for multiplication by either A(T) or (A(T))-l. 
With the operation count given in [18] for a sine transform using a radix-2 FFT, this 
requires 3 log, N + 5 additions and 2 log, N multiplications for each component of 
a vector of length (N - l), independently of the value of I’. The “break-even” point 
is approximately r = log,(log, N) + 1; for I’ larger than this it is faster to use Eq. (6) 
rather than Eq. (5) for the factorization of A(‘). 

The basic idea of the FACR(I) algorithm is to use Eq. (5) to factorize A(,r) for small 
values of r, and to switch to Eq. (6) for larger values of r. To prevent the growth of 
round-off errors, the preliminary steps of block-cyclic reduction in the algorithm 
presented below are carried out using Variant I of Buneman’s procedure. 

For 1 < j < M - 1, define p’,“) = 0, qkc’ = bj . Then for 0 < Y < I - 1, compute 

qi (r+1) = qi’l + qzh - 2pJT+1), 

(15) 

(16) 

where h = 2’, j = 2h, 4h ,..., M - 212, AfT) is given by Eq. (5), and pg) = pQ = 0. 
After I cyclic reduction steps, we have the following system: 

X$-h + ACZ)x. + x. 3 3+n = A(Z)pjZ) + qj”’ (17) 

with x,, = xM = 0, involving only those values of j which are multiples of h = 2z. 
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If we then define 

Eq. (17) can be rewritten as 

for h = 2!, j = h, 2h, . . . . M - 12, with y. = y&* = 0. 
NOW defining fr = Syi , gj = Sgj , and using Eq. (6) to factorize A(I), Eq. (29) 

becomes 
9j-h + A(Z’fj + y&h = & * (21) 

As L!I~ is diagonal, Eq. (21) represents a set of (W - 1) independent tridiagonat 
systems which can easily be solved for qj , j = 1~; 2h,.... M - h. From each 9i we 
obtain yj = S-lQj and hence xj = yj + RI’). 

The remaining xi are then found in I steps of back-substitution: for r = t - I: 
1 - 2,..., 0 we solve the system 

A”‘(x, - pj”‘) = slri - (Xj-l, j Ej+h) (22) 

for h = 2’r, j = Jz, 3h,..., M - 11, using once again the factorization of Airi given by 
Eq. (5)~ 

In rh.e algorithm defined by Eqs. (15)-(22), I can take any value from 0 to log, ,U - 1. 
For I = 0, we simply have the basic FFT method. For I = 1, we have a stabilized 
version of Nockney’s FACR(I) algorithm [6, 73. For i = log, M - 1, the kna1 step 
of cyclic reduction yields the system 

for h = 2z = M/2, and Eq. (20) becomes simply 

and hence 

Buneman’s algorithm (Variant 1) also yields Eq. (23) after I = log, M - 1 reduction 
steps, the difference being that the system is solved by using Eq. (5) again to factorize 
Atz). Formally we can identify Buneman’s algorithm with FACR(log, $41, although 
there are only log, M - 1 preliminary reduction steps. 
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For 1 = 0, only one array of size &fN is needed, and the solution field can over- 
write the right-hand side. For 1 > 0, the storage requirements for this algorithm are 
the same as for Buneman’s algorithm (Variant I). As pointed out in [18], this is only 
3MN/2; alternatively, the vectors pi:’ and qj.‘) for I’ > 0 can share a second array of 
size MN which finally contains the solution field, and the right-hand side is preserved. 

However, we show in the next section that if the tridiagonal systems are solved by 
Gaussian elimination using precomputed coefficients, then for 0 < I < log, M there 
is a considerable saving in the storage requirements for these coefficients compared 
with both the basic FFT and Buneman’s algorithms. 

4. OPERATION COLJNTS AND OPTIMUM I 

Swarztrauber [14] presented an algorithm very similar to the one described above, 
the differences being that the block-cyclic reduction was performed using Variant 2 
of Buneman’s algorithm (in which the vectors p’j” are eliminated) and the tridiagonal 
systems were solved by (scalar) cyclic reduction. In deriving an operation count and 
hence determining the optimum value of 1, Swarztrauber defined an operation as 
consisting of a multiplication or division together with an addition or subtraction, 
and included only those operations which contributed toward the asymptotic opera- 
tion count. In this paper we take a somewhat different viewpoint; we count additions 
and multiplications separately, and include all of them (apart from some lower- 
order terms of little significance). 

In fact it turns out that for practicable grid sizes, there are approximately twice as 
many additions as multiplications, while the asymptotic operation count under- 
estimates the actual operation count by at least 50 %. 

In deriving an operation count we assume, following [ 181, that a tridiagonal system 
of order M (with unit subdiagonals and superdiagonals) can be solved in 2n additions 
and 2n multiplications using precomputed coefficients, while a sine transform of order 
IZ takes (1.5 log, y1 + 2S)n additions and (log, 12 - 0.5)~~ multiplications. 

During the rth preliminary step of cyclic reduction (1 < I’ < E), we have to solve 
(A{ - 2’)/2 tridiagonal systems of order (N - 1); altogether these contribute approxi- 
mately ZiWN additions and ZMN multiplications. Implementation of Eqs. (15) and (16) 
involves some extra additions: approximately 3MN/2 for the first reduction (Y = l), 
since pj to) = 0 for allj and 6MN/2T for the rth reduction (2 < Y < I). (Multiplication 
by 2 has been counted as an addition.) The total number of extra additions from this 
phase is thus approximately iWN(3/2 + 6 x:=Z 2-‘) = AJN(9/2 - 6/2z). 

After I steps of cyclic reduction, we are left with a system of order 
L = (N - l)(iW/Zz - l), defined by Eq. (17). Computation of the vectors g, takes 2L 
additions; the sine transforms to find & take (1.5 log, N + 2.5)L additions and 
(log, N - 0.5) L multiplications; the solution of tridiagonal systems for gj takes 
2L additions and 2L multiplications; the inverse sine transforms for yj take 
(1.5 log, N + 2.5)L additions and (log, N - 0.5)L multiplications; and finally the xj 
are found after another L additions. Taking L - 2-IMN, the contributions from this 
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phase of the algorithm are 2PMN(3 log, N + 10) additions and 2-:MN(2 log, N ~-- 1) 
multiplications. 

Finally, during each of the I steps of back-substitution we have to solve M;2 
tridiagonal systems of order (N - l), contributing ahogether approximately E,WZ 
additions and MN multiplications. The extra additions required to implement Eq. (22) 
amount to 3(N - 1) for each xj found in the first (: - 1) steps of back-substitution, 
but only 2(N - 1) for each xj found in the last step (since p$’ = 0). The total number 
of extra additions from this phase is approximately MN(Si2 - 3,/2”). 

Summing up all of these contributions and making only a slight further approxi- 
mation in each case, the operation count for the whole algorithm is approximate!y 

[(Zl + 7) $ 22’(3 log, N)] MN additions 

[2l+ 2-r(2 log, N)] MN multiplications. $5) 

Strictly speaking, these estimates are only valid for I < 1 < log, M - 1. From [lg] 
we have the following operation counts: for the basic FFT method, FAC 
(3 log, N + 7) MN additions and (2 log, N + 1) M% multiplications; for Buneman’s 
algorithm, FACR(log, M), (2 1ogM + 5) MN additions and (2 log, M - 2) MN 
multiplications. 

Differentiating (24) and (25) with respect to 1, we find that the number of addit:ons 
is minimized at 2 - logJog, N), while the number of multiplications is minimized at 
1 - log,(log, N) - t. Taking I - log,(log, N) to be the optimum value for the whole 
algorithm, and substituting in (24) and (25), we obtain the following operation counts 
for the FACR(I) algorithm with optimum I: 

[2 log,(log, N) + 101 MN additions 

and 

[2 log,(log, N) + 21 MN multiplications. 

Several observations are in order here. First, the optimum value of i and the total 
number of operations per point depend only on N, the lengthof theFourier transforms. 
Second, assuming that the range of practicable grid sizes is 16 < N < 256, :he 
operation count for FACR(Z) with optimum I is 14-14 additions and 6-8 multi- 
plications per point; hence the FACR(Z) algorithm represents a very close approach 
to the elusive “stable O(N*) algorithm” [l, 41. Even for N = 4096 the operation co~mt 

is only I7 additions and 9 multiplications per point. Third, while the actual count for 
practicable grid sizes is 20-24 operations per point, the ‘“asymptotic” court is 
4 log,(log, N) or 8-12 operations per point, an underestimate by at least 50 ?& 

It has already been mentioned that this analysis is only valid for 1 < I < log, M .-- I : 
in Table I the approximate numbers of additions and multiplications per point are 
presented for the N x N Dirichlet problem with 8 < N < 128 and all possible 
values of I, including I = 0 (the basic FFT method) and : = log, N (Runeman’s 
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algorithm). In deriving Table I, some lower-order terms, omitted in the foregoing 
analysis, were included. Note that for N = 8, Buneman’s algorithm requires fewer 
operations than for any I < log, A? For N > 16, the operation count is minimized 
at I = 2 or I = 3, in accordance with the analysis above; the minimum is quite 
shallow. 

TABLE I 

Number of Additions/Multiplications per Point for the N x N Dirichlet Problem 

N 

1 8 16 32 64 128 

1617 1919 22/11 25/13 2S/l5 
1315 15,‘6 1717 IS/8 2019 
1115 1316 1416 1517 16/S 
915 12,‘6 1417 1517 1518 

12/7 14% 15,‘8 16!9 
- 1418 16/9 17jlO 

- 17/10 18/l 1 
- - 19112 

Throughout this discussion we have assumed that all tridiagonal systems are solved 
by Gaussian elimination using precomputed coefficients. It is of interest to determine 
the number of such coefficients which are required, since this affects both the storage 
requirements and the time taken for preprocessing. For the simple tridiagonal systems 
encountered here, a system of order n requires IZ precomputed coefficients, which 
can be calculated with (1~ - 1) additions and fz divisions. 

In the reduction and back-substitution phases of the FACR(1) algorithm, we have 
to solve systems involving a total of 2’ - 1 different tridiagonal matrices, each of 
order (N - 1). In the remaining part of the algorithm, after the Fourier sine transforms 
have been performed, we have to solve (N - 1) systems each of order (LW/~~ - 1). 
The total number of coefficients required is thus v = (N - 1)(2” + M/2” - 2); in 
this case the total is also valid for 1 = 0 and I = log, M. Differentiating v with respect 
to Z, we find that the minimum number of coefficients is 2(N - l)(Wp - 1) at 
I = +1og,iw. 

The values of y/(N - 1) are presented in Table II for the N x N Dirichlet problem 
(8 < N < 128) and all possible values of 1. For I = 0 and I = log, N, the array of 
coefficients is the same size as the right-hand side and solution arrays, but for inter- 
mediate values of I the extra storage required is considerably less. Thus the FACR(Z) 
algorithm with optimum I not only requires less computation than either the basic 
FFT method or Buneman’s algorithm; if Gaussian elimination is used for solving the 
tridiagonal systems, then the optimum FACR(I) algorithm also requires fewer 
coefficients (and hence also less preprocessing) than either of the basic methods. 
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TABLE II 

Number of Precomputed Coefficients Y Required for Tridiagonal Systems for 
the N x N Dirichlet Problem 

N 

i 8 16 32 64 128 

0 7 15 31 63 i27 
i 4 8 16 32 64 
2 4 6 IO :s 35 
3 7 8 10 14 22 
4. 15 15 18 22 
5 - 31 32 34 
6 - - 63 64 
7 - 12: 

(i Tabulated value is v/(N - 1). 

As outlined in Section 6, the number of coefficients can in fact be further reduced by 
almost a factor of 2 if a modified form of Gaussian elimination is used for the tri- 
diagonal systems 

5. NLSIERICAL EXPERIMENTS 

A Fortran program (PSOLVE) was written to solve Poisson’s equation over a 
rectangle under Dirichlet boundary conditions, using the FACR(I) algorithm as 
described in Section 3. The program incorporates a “radix 4 + 2” FFT algorithm 
requiring no reordering [17], and won the “Poisson-solver contest” (on a 128 x 32 
problem) organized at Karlsruhe in March 1977 [ll]. A listing of PSOLVE (with some 
improvements incorporated since the Karlsruhe version) was included in [16]. 

Experiments were run to determine the speed and accuracy of the program on an 
N x N problem for various values of N and 1. Hackney [S] has compared several 
Poisson-solver programs on various computers and finds that the fastest program 
varies from one machine to another, and even from one compiler to another on the 
same machine. Accordingly, PSOLVE has been run on various machines; in this 
paper we report results obtained on a CDC CUBER-175 and on an IBM 366/195, 
using the compilers FTN 4.6 and FORTX, respectively. 

The CYBER-175 times are presetned in Table HE. Buneman’s algorithm is the 
fastest for N = 8 (as suggested by the operation counts in Table I) and also for 
Iv1 = 16. For N 3 16, the optimum value of I is found to be 3 or 4 rather than 2 or 3 
as predicted by the analysis of Section 4. The reason doubtless lies in the extra over- 
heads incurred in calling the FFT subroutine; it is worth performing an extra step of 
cyclic reduction to halve the number of Fourier transforms, at the expense of a slightly 
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higher floating-point operation count. Similar observations were made in [IS]. 
Taking the optimum value of I in each case, the CPU time per unknown is 
1.00 x lO-5 set at N = 8, and 1.07 x lO-5 set at N = 128. 

TABLE III 

CYBER-175 CPU Times (Seconds) for the N x N Dirichlet Problem 

N 
-~ ~~ 

I 8 16 32 64 12s 

0 2.24 x 1O-s 
1 1.26 x 1O-s 
2 7.35 x lo-” 
3 4.88 x 10-a 
4 - 
5 - 
6 - 
7 - 

8.43 x 10-S 2.61 x 1O-2 9.82 x 1O-2 3.69 x 10-l 
4.89 x 10-a 1.62 x 1O-2 6.24 x 1OF 2.38 x 10-l 
3.27 x 1O-3 1.19 x 10-s 4.72 x lo-” 1.84 x 10-I 
2.49 x 1O-5 1.06 x 1O-2 4.34 x 10-Z 1.73 x 10-l 
2.21 x 10-Z 1.03 x 10-Z 4.44 x 10-Z 1.82 x 10-I 

1.05 x 10-z 4.71 x 10-Z 1.98 x 10-l 
- 4.94 x 10-z 2.15 x 10-l 
- - - 2.29 x 10-l 

TABLE IV 

IBM 360/195 CPU Times (Seconds) for the N x N Dirichlet Problem 

N 

I 8 16 32 64 128 

0 1.38 x 1O-3 5.75 x 10-a 2.11 x 10-Z 9.04 x 10-z 3.60 x 10-l 
1 9.38 x lo-” 3.97 x 10-s 1.53 x 10-z 6.49 x lo-? 2.63 x 10-l 
2 6.79 x lo+ 3.22 x 1O-s 1.31 x 10-Z 5.54 x 10-S 2.26 x 10-l 
3 5.91 x 10-i 2.93 x 1O-4 1.31 x 10-e 5.55 x 10-e 
4 - 2.92 x 1O-2 1.37 x 10-L 5.99 x 10-Z 
5 - - 1.43 x IO-” 6.48 x lo-* 
6 - - - 6.86 x 10-z 
7 - - - - 

The IBM 360/195 CPU times are presented in Table IV. Again Buneman’s algorithm 
is the fastest for N = 8; for N = 16 this is also true, but the time for I = 3 is almost 
identical. For N > 16, the optimum value of I is 2 or 3, in agreement with the 
theoretical estimate. Taking the optimum value of I in each case, the CPU time per 
unknown increases from 1.21 x lO-5 set at N = 8 to 1.40 x 1O-5 set at N = 128. 

Differing degrees of success in optimizing key sections of the program are reflected 
in the fact that at Z = 0, where most of the work consists of Fast Fourier Transforms, 
the 3601195 appears to be the faster machine; while at Z = log, N, where most of the 
work consists of solving tridiagonal systems, the CYBER-175 appears to be faster. 
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Experiments were also carried out to investigate the accuracy of FACR(!) z&c- 
rithms. For each value of N, a number of random “true” solutions were generated 
with values in the interval [-1, $11. Corresponding right-hand sides were then 
computed using temporary double precision, for reasons set out in [IX], and input 
to PSOLVE. The computed solutions were compared with the true solutions, and the 
mean maximum absolute errors for each value of N and I were then determined. 

n the CUBER-175, the option is available at compile time to spec;if>r either 
truncated or rounded floating-point arithmetic; the effect of this choice on the accuracy 
of PSOLVE was also studied. 

TABLE V 

Mean Maximum Error for the N x N Dirichkt Frobkm” 

N 

8 16 32 64 129 

4.19 x lo-= 1.38 x 10-13 4.24 x lo-= 2.16 A 10-l* 8.34 ;< IO-1” 
3.02 x IO-l4 8.29 x 10-i’ 3.59 x 10-18 1.67 x 10-1’ 7.62 x’ Ii]-” 
2.49 x IO-14 5.40 x 10-l” 2.35 x IO-l3 7.57 x 10-13 3.87 ,/ g-:2 
2.42 x 10-14 4.17 x 10-14 1.09 x 10-I’ 4.28 x lo--;3 1.99 x ‘io-1” 

- 4.05 x 10-14 6.55 x 10-l” 2.16 x :O-Is 9.40 xfi< [O-& 
- 6.73 x lo-l4 1.22 :< IO-‘3 4.16 x 10-l’: 

- - 1.14 J 10-13 2.24 ‘d I~ 10-1:’ 
- 1.71 ;< g-‘” 

ic CYBER-175, old version of sine transform, truncated arithmetic. 

Table V shows the results obtained on the CUBER-175 using the Karlsruhe version 
of PSOLVE. For each value of N, the error decreases with increasing 1, so that 
FACR(log, N - 1) and FACR(log, N) (i.e., Buneman’s algorithm) are the most 
accurate in each case. (Here truncated arithmetic was used.) For fixed I, including 
I = 0 (the basic FFT algorithm), the errors are roughly proportional to ik’g. For 
Buneman’s algorithm (which does not use the FFT), however; the errors are roughI;; 
proportional to N2!3. 

In the Karlsruhe version of PSOLVE, the algorithm of Cooley, Lewis, and Welch [3] 
was used to convert real sine transforms of length N into complex transforms of 
length Nj2. Since the sine transform is its own inverse (apart from a scaling factor), 
one can alternatively “‘invert” their algorithm and it turns out that by doing so the 
round-off error is considerably reduced. The reason is probably that the original 
algorithm involves a multiplication by l/(sin(j,/N)), which is large for small j; in the 
inverted form this becomes a multiplication by sin( jr/N). The version of PSOLVE 
given in [16] uses the new version of the sine transform, an outline of which is given 
in the Appendix to this paper. 
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TABLE VI 

Mean Maximum Error for the N x N Dirichlet Problem” 

N 

I 8 16 32 64 128 

5.68 x 10-l” 1.14 x 10-13 2.10 x IO-15 4.30 x 10-13 8.94 x lo-= 
3.38 x lo-l4 7.30 x lo-la 1.22 x 10-13 3.17 x 10-13 5.89 x lo-l3 
2.42 x lo-l3 4.73 x 10-14 6.65 x 10-12 2.05 x 10-13 3.81 x lo-l3 
2.42 x 10-l” 4.07 x 10-l& 6.59 x 10-l” 1.46 x lo-= 2.85 x lo-l3 

- 4.05 x 10-14 6.64 x lo-l4 1.17 x 10-13 2.29 x 10-13 
- - 6.73 x 10-r* 1.11 x 10-13 1.92 x 10-13 
- 1.14 x 10-13 1.79 x 10-13 
- - - - 1.71 x 10-18 

U CYBER-175, new version of sine transform, truncated arithmetic. 

Following this discovery, the accuracy experiments described above were repeated; 
the results are presented in Table VI. For I = log, N (Buneman’s algorithm), the 
results are of course the same as before. Otherwise (apart from N = 8, I = 0, and 
I = 1) the errors are reduced; for N = 128, I = 0 there is an order of magnitude 
reduction. For fixed 1, the errors are now roughly proportional to N. 

TABLE VII 

Mean Maximum Error for the N x N Dirichlet Problem= 

N 

I 8 16 32 64 128 

0 2.33 x lo-l4 5.84 x 10-l* 1.18 x lo-= 
1 1 97 

1:67 
x 10-l” 5.33 x 10-12 9.45 x 10-l’ 

2 x lo-la 4.48 x 10-l” 7.53 x 10-I” 
3 1.49 x IO-IA 4.12 x 10-l” 7.37 x 10-I” 
4 - 4.01 x 10-l& 7.20 x lo-I4 
5 7.08 x 10-l” 
6 
7 - 

2.38 x lo-= 
1.27 x 10-13 
1.05 x 10-13 
9.31 x lo-= 
1.06 x lo-= 
1.04 x 10-13 
1.04 x 10-13 

- 

5.50 x 10-15 
3.45 x 10-13 
2.82 x lo-= 
2.55 x lo-= 
2.42 x lo-= 
2.17 x lo-= 
2.00 x 10-13 
1.87 x lo-l5 

a CYBER-175, new version of sine transform, rounded arithmetic. 

The version of PSOLVE incorporating the new sine transform was also tested on 
the CYBER-175 using rounded floating-point arithmetic. The results are shown in 
Table VII. It is seen that for Z = 0 the errors are roughly halved by using the rounding 
option, while for 1 = log, N the errors are generally similar whichever of the two 
options is chosen. 
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TABLE VIII 

Mean Maximum Error for the N x N Dirichlet Problem” 

N 

i 8 16 32 64 128 

0 4.14 x 10-S 7.20 x lo-@ 1.51 x 10-j 2.98 x 10-b 5.99 x lo-" 
z 2.53 x 10m6 4.27 x lo-" 1.05 x 10-S 2.00 x 10-S 3.38 x 10-j 
2 2.56 x lo-$ 4.05 x 1O-6 8.98 x 10-s I.41 x 10-S 2.57 x 10-j 
3 2.54 x 10-B 3.82 x 1O-6 8.08 x 1O-s I.30 x 10-s 2.44 x IO-5 
4 3.86 x lo-" 7.87 x lO-6 1.28 x 10-S 2.35 x 10-5 
5 8.12 x 10-G 1.33 :: 10-j 2.41 x 30-b 
6 - 1.37 x IG-" 2.52 x IO-" 
7 - - - 2.58 :< ;o-" 

fl IBM 360:‘195, neiv version of sine transform, truncated arithmetic. 

Only the new version of PSOLVE was tested on the IBM 360/195; the resul?s are 
presented in Table VIII. The errors are of course much larger, because of the differenca 
in word length. (The mantissa of a single-precision floating-point number contains 
24 bits on IBM machines, compared with 48 bits on CDC machines, and rounded 
floating-point arithmetic is not available as an option when compiling FORTRAN.) 
Again, for fixed 1 the error is roughly proportional to N. 

Comparing the results of Table VIII with those of Table V of [18] for COXC- 
sponding Assembler programs on an IBM 360/195, the decreased errors for FACR(C) 
reflect the improved sine transform used in PSOLVE, More surprisingly, the errors 
for PSOLVE with I = log, N are also considerably smaller than for the Assembler 
program implementing Buneman’s algorithm. The reason may be that this algorithm 
consists largely of solving systems of the form 

and the two programs solve such systems using the hi‘s in a different order. Schumarrn 
[l I] pointed out the need for research into the dependence of round-off errors on the 
spectrum of the right-hand side of Poisson’s equation; from the above result, it 
appears that the question of round-off errors in Poisson-solvers may be even more 
involved. 

6. GENERALIZATIONS 

The FACR(I) algorithm developed above solve s the discrete Poisson equation 
under a rather restrictive set of conditions; in this final section we irdicate sxw 
generalizations. 
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First, the extension to the case di # fl, is trivial, where di and dj are respectively 
the grid lengths in the i and j directions. If N is not a power of 2, then a mixed-radix 
FFT [13, 171 must be used (for efficiency, N should be a product of small primes). 
The FACR(Z) algorithm described above only requires that M be a multiple of 2z; 
for arbitrary M, a generalized form of block-cyclic reduction is available [12, 151. 
Other boundary conditions at i = 0, N can be incorporated by adding extra pre- 
processing and postprocessing options to the FFT [3, 141, and at j = 0, hl by modi- 
fying the block-cyclic reduction process appropriately [2]. 

As mentioned at the end of Section 3, the FACR(I) algorithm based on Variant 1 
of Buneman’s algorithm requires (for 1 > 0) an auxiliary array of dimension approxi- 
mately MN/2 even if the solution overwrites the right-hand side. If storage is so 
restricted that this is undesirable, then the version of the FACR(1) algorithm presented 
by Swarztrauber [14] and based on Variant 2 of Buneman’s algorithm can be used 
instead; the additional computation required is small, especially if Variant 2 is 
implemented as suggested in [18]. 

Finally, the array of coefficients can be eliminated by using alternative methods 
(e.g., cyclic reduction) for solving the tridiagonal systems, at the expense of some 
extra computation. It has already been shown, however, that for I close to the 
optimum value the coefficient array is much smaller than the solution and right-hand 
side arrays. As noted in [18], the storage requirement for the coefficients can be 
almost halved by using “symmetric” Gaussian elimination [5]; with this modification 
available, it appears that using alternative methods for the tridiagonal systems will 
seldom be worthwhile. 

In this paper we have considered the implementation of the FACR(Z) algorithm 
on serial computers; on a parallel or vector computer we must also consider the effect 
of the choice of I on the degree of parallelism shown by the algorithm. For instance, 
at 1 = 0 the algorithm is highly parallel, since at each stage we are either performing 
M - 1 independent sine transforms or solving N - 1 independent tridiagonal 
systems. For 1 > 0, the degree of parallelism decreases at each stage of the reduction 
process. Thus the optimum value of I is likely to be smaller on parallel and vector 
computers than on serial computers. 

APPENDIX: AN ALGORITHM FOR THE SINE TRANSFORM 

Details of the improved sine transform referred to in Section 5 are given here. 

Given xj , 1 < j < N - 1, we wish to compute 

N-l 

bk = c xj sin(jkrr/N), l,ck<N-1. 
j=l 

(I) Set y0 = 0, 

y.j = sin(jz-/N)(xj + XN-j) + +(Xj - XN+), 1 <j<N-1. 
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(2) Using a real periodic FFT (if necessary using the algorithm of [3j tG cocvert 
to a complex FFT of length N/2), compute 

N-l 

and 

(3) Finally set 

and 

b SW1 = L, + 2, > l<k < N/2 - 1, 
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