
JOURNALOFCOMPUTATIONALPHYSICS34,314329(1980)

On the FACR(Z) Algorithm for the Discrete Poisson Equation

CLIVE TEMPERTON

European Centre for Medium Range Weather Forecasts,
Shinfield Park, Reading, Berkshire, U.K.

Received October 3, 1978

Direct methods for the solution of the discrete Poisson equation over a rectangle are
commonly based either on Fourier transforms or on block-cyclic reduction. The relationship
between these two .approaches is demonstrated explicitly, and used to derive the FACR(I)
algorithm in which the Fourier transform approach is combined with I preliminary steps of
cyclic reduction. Tt is shown that the optimum choice of I leads to an algorithm for which
the operation count per mesh point is almost independent of the mesh size. Numerical
results concerning timing and round-off error are presented for the N x NDirichlet problem
for various values of N and 1. Extensions to more general problems, and to implementa-
tion on parallel or vector computers are briefly discussed.

1. INI'KODUCTION

In a previous paper [lS], the author compared several direct methods for the
solution of the discrete Poisson equation over an N x M rectangular grid, in terms of
operation counts, storage requirements, speed, and accuracy. The methods con-
sidered included FFT-based algorithms, block-cyclic reduction (Buneman’s
algorithm), and FACR(l) algorithms, in which one preliminary step of block-cyclic
reduction is used to halve either the number or the length of the Fourier transforms.

In this paper we consider the FACR(I) algorithm, in which I preliminary steps of
block-cyclic reduction are carried out, the reduced system is solved by the FFT method
and the solution is completed by I steps of block back-substitution. Both the basic
FFT method and Buneman’s algorithm are special cases of the FACR(Z) algorithm.

With the optimum value of Z, the FACR(I) method is probably the fastest known
numerically stable algorithm for solving the discrete Poisson equation over a rectangle;
the algorithms of Lorenz [9] and Schroder et al. [lo] are possible rivals.

Hackney [7] first introduced the FACR(1) algorithm, using I preliminary steps of a
numerically unstable form of block-cyclic reduction, which nevertheless gave satis-
factory results for small values of 1. Swarztrauber [14] used a stable cyclic reduction
scheme based on Variant 2 of Buneman’s algorithm [2], derived the optimum value
of Z, and showed that this gave an operation count asymptotically proportional to
MN log,(log, N).

In this paper we replace Variant 2 of Buneman’s algorithm by Variant 1 for
the cyclic reduction and repeat Swarztrauber’s analysis under a rather different set of

314
0021-9991/80/030314-16JO2.00/0
Copyright Q 1980 by Academic Press, Inc.
All rights of reproduction in any form reserved.

ON THE FACR(i) ALGORITHM 315

assumptions and definitions. Again it is shown that for optimum I the operation count
is asymptotically proportional to MN log,(log, N); however, it will be demonstrated
that for practicable grid sizes the operation count is effectively proportional to Il/l_rs
It will also be shown that the FACR(Z) algorithm arises quite naturally from a srudy
of the relationship between the basic FFT and block-cyclic reduction methods. For
simplicity we consider a rectangular grid (i,j): 0 < i < N, 0 <(I < icf3 with raix
gridlength, and with Dirichlet boundary conditions on ali sides; the number of
unknowns is thus (N - l)(&? - 1). We assume for the time being that N and M are
both powers of 2. Furthermore, it will be assumed that the discrete Poisson equation
is to be solved a number of times with different right-hand sides but with the same grid
and boundary conditions; and that core storage is plentiful, so that we can reserve
separate arrays for the right-hand side and the solution (to permit the use of Variant !
of Buneman’s algorithm), and can also precalculate an array of coefficients to be used
in the solution of tridiagonal systems by Gaussian elim.ination. Extensions of the
algorithm to other boundary conditions, arbitrary N and IQ7 and more stringem
storage restrictions will be considered in Section 6.

2. RELATIONSHIP BETWEEN FFT AND BLOCK-CYCLIC REDUCTIDN METHODS

It is customary to refer to the FFT and block-cyclic reduction methods for solving
the discrete Poisson equation as if they were unrelated; in fact the relationship bet?i;eea
them is very close, as will be demonstrated here.

Ordering the variables by rows, and defining

the discrete Poisson equation can be written as a block-trldiagonal system

where

A=

and x, = xfif = 0. (Nonhomogeneous boundary conditions at J = 0, M can be
handled by xnodifying b, and b,,-, , and at i = 0: N by modifying the tirst and ias:
components of each bj .)

316 CLIVE TEMPERTON

We first set out the cyclic odd-even reduction and factorization (CORF) algorithm
for solving this system as given by Buzbee et al. [2].

Define Ato) = A, bi”) = bj , 1 < j < M - 1.
Then after Y reduction steps we have the block-tridiagonal system

Xj-h + A(‘)Xj + Xj+h = j ,,“’ (1)

involving only those values of j which are multiples of h = 2T, where A(?), b$‘) are
defined recursively by

AWfl) = 21- (&T))B (r > 0) (2)

and

for j = 2h, 4h,..., M - 212, where h = 2’.
In particular, after k = (log, M - 1) reduction steps the system has been reduced

to a single equation:

for h = 2’2. The remainder of the system can then be solved by k steps of back-
substitution, using decreasing values of r; at each step we use Eq. (1) to obtain xi
for each j equal to an odd multiple of 2T, the solution having already been found
for all j equal to even multiples of 2’.

Two aspects of this algorithm are particularly worthy of note: first, the matrices
AfT) fill in rapidly as r increases, but, as shown in [2], the computations involving A(‘)
can be greatly simplified by using the factorization

A(‘) = - fi (A + 2 cos e,“‘l> (r > 01,
j=l

where 0y) = (2j - 1) ~-jZ~+l.
Second, as also proved in [2], the algorithm is numerically highly unstable, and

therefore of little practical use. Buneman’s algorithm stabilizes the calculation by
defining

and computing pr) and q$y’ rather than bg”; all explicit multiplications by A(T) are
thereby avoided.

We now consider an alternative method of stabilizing the CORF algorithm. The
matrix A can be factorized as

A = S-l&!3

ON THE FACR(E) ALGORITHM 31’9

where S is the matrix representation of a Fourier sine transform; thus S is defined by
S = (s.& where sij = (2/N) sin(ij z/N). (With this scaling, S-l = (N/Z)S.) .A is a
diagonal matrix of eigenvalues of A, defined by A = diag(h, Y..i, X,v-l), where
hi = 2 cos(j~/N) - 4. It is easy to show that

where the diagonal matrices A(+“) are defined recursively by

(1’0’ = .(q
flcr+u = 2; _ (fly, I > 0.

We can thus replace Eqs. (3), (4), and (1) by

,,?+I) = j,ti + bj’$ - s--‘A (T)&-?@
3 jy >

(r = 0, I,..., log, M - 2; h = 2T; j = 211, 4h,..., M - 2h),

fk = log, M - 2, h = 27, and

Xj = S-‘(Ll(T))--l S[bj(T) - Xj-h - Xj+hj ($I>

(r = log, M - 2,..,, 1, 0; h = 2r; j = h, 3h ,...) M - h).
We will not discuss the numerical stability of the algorithm defined by Eqs. (7)~(9),

but rather note that it requires almost twice as many sine transforms (and their
inverses) as necessary. If we first compute

then the algorithm becomes

(r = 0, I,..., log, M - 2; h = 2r; j = 2h, 4h,..., M - 2;2),

jib = (pd)-lfp

(k = logs M - 1, h = 29,

iij = (py-1 [f$-’ - gimh -. $+J

(Y = log, M - 2,..., 1, 0; h = 2’; j = h, 3h ,... - 5 M h), and &ally

Xj = S-l?j, l<j<M---1,

5Er/34/3-3

318 CLIVE TEMPERTON

But the algorithm defined by Eqs. (lo)-(14) is precisely the “basic FFT” method, with
the tridiagonal systems solved by (scalar) cyclic reduction. Thus the block-cyclic
reduction method (stabilized by using the factorization of Eq. (6)) and the basic
FFT method (with the tridiagonal systems solved by cyclic reduction) are equivalent.
By the time the block-cyclic reduction method has been stabilized instead by
Buneman’s algorithm, and the basic FFT method has been modified to solve the
tridiagonal systems by Gaussian elimination, the two resulting algorithms appear
quite different; nevertheless, as the above argument shows, they are very closely
related.

3. THE FACR(1) ALGORITHM

Apart from considerations of stability, there is another motivation for factorizing
ACT) using Eq. (6) rather than Eq. (5), for computing bsy’ during the reduction phase
and xj during the back-substitution phase. Using the factorization of Eq. (5), multi-
plication of a vector by A(‘) requires 2T+1 additions and 2’ multiplications per
component, while multiplication by (AcT))-l requires 2 r+l additions and 2T+1 multi-
plications per component, assuming that the tridiagonal systems are solved by
Gaussian elimination using precomputed coefficients. Using the factorization of
Eq. (6), on the other hand, involves a sine transform, multiplication by a diagonal
matrix, and an inverse sine transform, for multiplication by either A(T) or (A(T))-l.
With the operation count given in [18] for a sine transform using a radix-2 FFT, this
requires 3 log, N + 5 additions and 2 log, N multiplications for each component of
a vector of length (N - l), independently of the value of I’. The “break-even” point
is approximately r = log,(log, N) + 1; for I’ larger than this it is faster to use Eq. (6)
rather than Eq. (5) for the factorization of A(‘).

The basic idea of the FACR(I) algorithm is to use Eq. (5) to factorize A(,r) for small
values of r, and to switch to Eq. (6) for larger values of r. To prevent the growth of
round-off errors, the preliminary steps of block-cyclic reduction in the algorithm
presented below are carried out using Variant I of Buneman’s procedure.

For 1 < j < M - 1, define p’,“) = 0, qkc’ = bj . Then for 0 < Y < I - 1, compute

qi (r+1) = qi’l + qzh - 2pJT+1),

(15)

(16)

where h = 2’, j = 2h, 4h ,..., M - 212, AfT) is given by Eq. (5), and pg) = pQ = 0.
After I cyclic reduction steps, we have the following system:

X$-h + ACZ)x. + x. 3 3+n = A(Z)pjZ) + qj”’ (17)

with x,, = xM = 0, involving only those values of j which are multiples of h = 2z.

ON THE FACR(/) ALGORITHM

If we then define

Eq. (17) can be rewritten as

for h = 2!, j = h, 2h, M - 12, with y. = y&* = 0.
NOW defining fr = Syi , gj = Sgj , and using Eq. (6) to factorize A(I), Eq. (29)

becomes
9j-h + A(Z’fj + y&h = & * (21)

As L!I~ is diagonal, Eq. (21) represents a set of (W - 1) independent tridiagonat
systems which can easily be solved for qj , j = 1~; 2h,.... M - h. From each 9i we
obtain yj = S-lQj and hence xj = yj + RI’).

The remaining xi are then found in I steps of back-substitution: for r = t - I:
1 - 2,..., 0 we solve the system

A”‘(x, - pj”‘) = slri - (Xj-l, j Ej+h) (22)

for h = 2’r, j = Jz, 3h,..., M - 11, using once again the factorization of Airi given by
Eq. (5)~

In rh.e algorithm defined by Eqs. (15)-(22), I can take any value from 0 to log, ,U - 1.
For I = 0, we simply have the basic FFT method. For I = 1, we have a stabilized
version of Nockney’s FACR(I) algorithm [6, 73. For i = log, M - 1, the kna1 step
of cyclic reduction yields the system

for h = 2z = M/2, and Eq. (20) becomes simply

and hence

Buneman’s algorithm (Variant 1) also yields Eq. (23) after I = log, M - 1 reduction
steps, the difference being that the system is solved by using Eq. (5) again to factorize
Atz). Formally we can identify Buneman’s algorithm with FACR(log, $41, although
there are only log, M - 1 preliminary reduction steps.

320 CLIVE TEMPERTON

For 1 = 0, only one array of size &fN is needed, and the solution field can over-
write the right-hand side. For 1 > 0, the storage requirements for this algorithm are
the same as for Buneman’s algorithm (Variant I). As pointed out in [18], this is only
3MN/2; alternatively, the vectors pi:’ and qj.‘) for I’ > 0 can share a second array of
size MN which finally contains the solution field, and the right-hand side is preserved.

However, we show in the next section that if the tridiagonal systems are solved by
Gaussian elimination using precomputed coefficients, then for 0 < I < log, M there
is a considerable saving in the storage requirements for these coefficients compared
with both the basic FFT and Buneman’s algorithms.

4. OPERATION COLJNTS AND OPTIMUM I

Swarztrauber [14] presented an algorithm very similar to the one described above,
the differences being that the block-cyclic reduction was performed using Variant 2
of Buneman’s algorithm (in which the vectors p’j” are eliminated) and the tridiagonal
systems were solved by (scalar) cyclic reduction. In deriving an operation count and
hence determining the optimum value of 1, Swarztrauber defined an operation as
consisting of a multiplication or division together with an addition or subtraction,
and included only those operations which contributed toward the asymptotic opera-
tion count. In this paper we take a somewhat different viewpoint; we count additions
and multiplications separately, and include all of them (apart from some lower-
order terms of little significance).

In fact it turns out that for practicable grid sizes, there are approximately twice as
many additions as multiplications, while the asymptotic operation count under-
estimates the actual operation count by at least 50 %.

In deriving an operation count we assume, following [181, that a tridiagonal system
of order M (with unit subdiagonals and superdiagonals) can be solved in 2n additions
and 2n multiplications using precomputed coefficients, while a sine transform of order
IZ takes (1.5 log, y1 + 2S)n additions and (log, 12 - 0.5)~~ multiplications.

During the rth preliminary step of cyclic reduction (1 < I’ < E), we have to solve
(A{ - 2’)/2 tridiagonal systems of order (N - 1); altogether these contribute approxi-
mately ZiWN additions and ZMN multiplications. Implementation of Eqs. (15) and (16)
involves some extra additions: approximately 3MN/2 for the first reduction (Y = l),
since pj to) = 0 for allj and 6MN/2T for the rth reduction (2 < Y < I). (Multiplication
by 2 has been counted as an addition.) The total number of extra additions from this
phase is thus approximately iWN(3/2 + 6 x:=Z 2-‘) = AJN(9/2 - 6/2z).

After I steps of cyclic reduction, we are left with a system of order
L = (N - l)(iW/Zz - l), defined by Eq. (17). Computation of the vectors g, takes 2L
additions; the sine transforms to find & take (1.5 log, N + 2.5)L additions and
(log, N - 0.5) L multiplications; the solution of tridiagonal systems for gj takes
2L additions and 2L multiplications; the inverse sine transforms for yj take
(1.5 log, N + 2.5)L additions and (log, N - 0.5)L multiplications; and finally the xj
are found after another L additions. Taking L - 2-IMN, the contributions from this

ON THE FACR(l) ALGORITHM 32 1

phase of the algorithm are 2PMN(3 log, N + 10) additions and 2-:MN(2 log, N ~-- 1)
multiplications.

Finally, during each of the I steps of back-substitution we have to solve M;2
tridiagonal systems of order (N - l), contributing ahogether approximately E,WZ
additions and MN multiplications. The extra additions required to implement Eq. (22)
amount to 3(N - 1) for each xj found in the first (: - 1) steps of back-substitution,
but only 2(N - 1) for each xj found in the last step (since p$’ = 0). The total number
of extra additions from this phase is approximately MN(Si2 - 3,/2”).

Summing up all of these contributions and making only a slight further approxi-
mation in each case, the operation count for the whole algorithm is approximate!y

[(Zl + 7) $ 22’(3 log, N)] MN additions

[2l+ 2-r(2 log, N)] MN multiplications. $5)

Strictly speaking, these estimates are only valid for I < 1 < log, M - 1. From [lg]
we have the following operation counts: for the basic FFT method, FAC
(3 log, N + 7) MN additions and (2 log, N + 1) M% multiplications; for Buneman’s
algorithm, FACR(log, M), (2 1ogM + 5) MN additions and (2 log, M - 2) MN
multiplications.

Differentiating (24) and (25) with respect to 1, we find that the number of addit:ons
is minimized at 2 - logJog, N), while the number of multiplications is minimized at
1 - log,(log, N) - t. Taking I - log,(log, N) to be the optimum value for the whole
algorithm, and substituting in (24) and (25), we obtain the following operation counts
for the FACR(I) algorithm with optimum I:

[2 log,(log, N) + 101 MN additions

and

[2 log,(log, N) + 21 MN multiplications.

Several observations are in order here. First, the optimum value of i and the total
number of operations per point depend only on N, the lengthof theFourier transforms.
Second, assuming that the range of practicable grid sizes is 16 < N < 256, :he
operation count for FACR(Z) with optimum I is 14-14 additions and 6-8 multi-
plications per point; hence the FACR(Z) algorithm represents a very close approach
to the elusive “stable O(N*) algorithm” [l, 41. Even for N = 4096 the operation co~mt

is only I7 additions and 9 multiplications per point. Third, while the actual count for
practicable grid sizes is 20-24 operations per point, the ‘“asymptotic” court is
4 log,(log, N) or 8-12 operations per point, an underestimate by at least 50 ?&

It has already been mentioned that this analysis is only valid for 1 < I < log, M .-- I :
in Table I the approximate numbers of additions and multiplications per point are
presented for the N x N Dirichlet problem with 8 < N < 128 and all possible
values of I, including I = 0 (the basic FFT method) and : = log, N (Runeman’s

322 CLIVE TEMPERTON

algorithm). In deriving Table I, some lower-order terms, omitted in the foregoing
analysis, were included. Note that for N = 8, Buneman’s algorithm requires fewer
operations than for any I < log, A? For N > 16, the operation count is minimized
at I = 2 or I = 3, in accordance with the analysis above; the minimum is quite
shallow.

TABLE I

Number of Additions/Multiplications per Point for the N x N Dirichlet Problem

N

1 8 16 32 64 128

1617 1919 22/11 25/13 2S/l5
1315 15,‘6 1717 IS/8 2019
1115 1316 1416 1517 16/S
915 12,‘6 1417 1517 1518

12/7 14% 15,‘8 16!9
- 1418 16/9 17jlO

- 17/10 18/l 1
- - 19112

Throughout this discussion we have assumed that all tridiagonal systems are solved
by Gaussian elimination using precomputed coefficients. It is of interest to determine
the number of such coefficients which are required, since this affects both the storage
requirements and the time taken for preprocessing. For the simple tridiagonal systems
encountered here, a system of order n requires IZ precomputed coefficients, which
can be calculated with (1~ - 1) additions and fz divisions.

In the reduction and back-substitution phases of the FACR(1) algorithm, we have
to solve systems involving a total of 2’ - 1 different tridiagonal matrices, each of
order (N - 1). In the remaining part of the algorithm, after the Fourier sine transforms
have been performed, we have to solve (N - 1) systems each of order (LW/~~ - 1).
The total number of coefficients required is thus v = (N - 1)(2” + M/2” - 2); in
this case the total is also valid for 1 = 0 and I = log, M. Differentiating v with respect
to Z, we find that the minimum number of coefficients is 2(N - l)(Wp - 1) at
I = +1og,iw.

The values of y/(N - 1) are presented in Table II for the N x N Dirichlet problem
(8 < N < 128) and all possible values of 1. For I = 0 and I = log, N, the array of
coefficients is the same size as the right-hand side and solution arrays, but for inter-
mediate values of I the extra storage required is considerably less. Thus the FACR(Z)
algorithm with optimum I not only requires less computation than either the basic
FFT method or Buneman’s algorithm; if Gaussian elimination is used for solving the
tridiagonal systems, then the optimum FACR(I) algorithm also requires fewer
coefficients (and hence also less preprocessing) than either of the basic methods.

ON THE FACR(l) ALGORITHM

TABLE II

Number of Precomputed Coefficients Y Required for Tridiagonal Systems for
the N x N Dirichlet Problem

N

i 8 16 32 64 128

0 7 15 31 63 i27
i 4 8 16 32 64
2 4 6 IO :s 35
3 7 8 10 14 22
4. 15 15 18 22
5 - 31 32 34
6 - - 63 64
7 - 12:

(i Tabulated value is v/(N - 1).

As outlined in Section 6, the number of coefficients can in fact be further reduced by
almost a factor of 2 if a modified form of Gaussian elimination is used for the tri-
diagonal systems

5. NLSIERICAL EXPERIMENTS

A Fortran program (PSOLVE) was written to solve Poisson’s equation over a
rectangle under Dirichlet boundary conditions, using the FACR(I) algorithm as
described in Section 3. The program incorporates a “radix 4 + 2” FFT algorithm
requiring no reordering [17], and won the “Poisson-solver contest” (on a 128 x 32
problem) organized at Karlsruhe in March 1977 [ll]. A listing of PSOLVE (with some
improvements incorporated since the Karlsruhe version) was included in [16].

Experiments were run to determine the speed and accuracy of the program on an
N x N problem for various values of N and 1. Hackney [S] has compared several
Poisson-solver programs on various computers and finds that the fastest program
varies from one machine to another, and even from one compiler to another on the
same machine. Accordingly, PSOLVE has been run on various machines; in this
paper we report results obtained on a CDC CUBER-175 and on an IBM 366/195,
using the compilers FTN 4.6 and FORTX, respectively.

The CYBER-175 times are presetned in Table HE. Buneman’s algorithm is the
fastest for N = 8 (as suggested by the operation counts in Table I) and also for
Iv1 = 16. For N 3 16, the optimum value of I is found to be 3 or 4 rather than 2 or 3
as predicted by the analysis of Section 4. The reason doubtless lies in the extra over-
heads incurred in calling the FFT subroutine; it is worth performing an extra step of
cyclic reduction to halve the number of Fourier transforms, at the expense of a slightly

324 CLIVE TEMPERTON

higher floating-point operation count. Similar observations were made in [IS].
Taking the optimum value of I in each case, the CPU time per unknown is
1.00 x lO-5 set at N = 8, and 1.07 x lO-5 set at N = 128.

TABLE III

CYBER-175 CPU Times (Seconds) for the N x N Dirichlet Problem

N
-~ ~~

I 8 16 32 64 12s

0 2.24 x 1O-s
1 1.26 x 1O-s
2 7.35 x lo-”
3 4.88 x 10-a
4 -
5 -
6 -
7 -

8.43 x 10-S 2.61 x 1O-2 9.82 x 1O-2 3.69 x 10-l
4.89 x 10-a 1.62 x 1O-2 6.24 x 1OF 2.38 x 10-l
3.27 x 1O-3 1.19 x 10-s 4.72 x lo-” 1.84 x 10-I
2.49 x 1O-5 1.06 x 1O-2 4.34 x 10-Z 1.73 x 10-l
2.21 x 10-Z 1.03 x 10-Z 4.44 x 10-Z 1.82 x 10-I

1.05 x 10-z 4.71 x 10-Z 1.98 x 10-l
- 4.94 x 10-z 2.15 x 10-l
- - - 2.29 x 10-l

TABLE IV

IBM 360/195 CPU Times (Seconds) for the N x N Dirichlet Problem

N

I 8 16 32 64 128

0 1.38 x 1O-3 5.75 x 10-a 2.11 x 10-Z 9.04 x 10-z 3.60 x 10-l
1 9.38 x lo-” 3.97 x 10-s 1.53 x 10-z 6.49 x lo-? 2.63 x 10-l
2 6.79 x lo+ 3.22 x 1O-s 1.31 x 10-Z 5.54 x 10-S 2.26 x 10-l
3 5.91 x 10-i 2.93 x 1O-4 1.31 x 10-e 5.55 x 10-e
4 - 2.92 x 1O-2 1.37 x 10-L 5.99 x 10-Z
5 - - 1.43 x IO-” 6.48 x lo-*
6 - - - 6.86 x 10-z
7 - - - -

The IBM 360/195 CPU times are presented in Table IV. Again Buneman’s algorithm
is the fastest for N = 8; for N = 16 this is also true, but the time for I = 3 is almost
identical. For N > 16, the optimum value of I is 2 or 3, in agreement with the
theoretical estimate. Taking the optimum value of I in each case, the CPU time per
unknown increases from 1.21 x lO-5 set at N = 8 to 1.40 x 1O-5 set at N = 128.

Differing degrees of success in optimizing key sections of the program are reflected
in the fact that at Z = 0, where most of the work consists of Fast Fourier Transforms,
the 3601195 appears to be the faster machine; while at Z = log, N, where most of the
work consists of solving tridiagonal systems, the CYBER-175 appears to be faster.

ON THE FACR(l) ALGORITHM 325

Experiments were also carried out to investigate the accuracy of FACR(!) z&c-
rithms. For each value of N, a number of random “true” solutions were generated
with values in the interval [-1, $11. Corresponding right-hand sides were then
computed using temporary double precision, for reasons set out in [IX], and input
to PSOLVE. The computed solutions were compared with the true solutions, and the
mean maximum absolute errors for each value of N and I were then determined.

n the CUBER-175, the option is available at compile time to spec;if>r either
truncated or rounded floating-point arithmetic; the effect of this choice on the accuracy
of PSOLVE was also studied.

TABLE V

Mean Maximum Error for the N x N Dirichkt Frobkm”

N

8 16 32 64 129

4.19 x lo-= 1.38 x 10-13 4.24 x lo-= 2.16 A 10-l* 8.34 ;< IO-1”
3.02 x IO-l4 8.29 x 10-i’ 3.59 x 10-18 1.67 x 10-1’ 7.62 x’ Ii]-”
2.49 x IO-14 5.40 x 10-l” 2.35 x IO-l3 7.57 x 10-13 3.87 ,/ g-:2
2.42 x 10-14 4.17 x 10-14 1.09 x 10-I’ 4.28 x lo--;3 1.99 x ‘io-1”

- 4.05 x 10-14 6.55 x 10-l” 2.16 x :O-Is 9.40 xfi< [O-&
- 6.73 x lo-l4 1.22 :< IO-‘3 4.16 x 10-l’:

- - 1.14 J 10-13 2.24 ‘d I~ 10-1:’
- 1.71 ;< g-‘”

ic CYBER-175, old version of sine transform, truncated arithmetic.

Table V shows the results obtained on the CUBER-175 using the Karlsruhe version
of PSOLVE. For each value of N, the error decreases with increasing 1, so that
FACR(log, N - 1) and FACR(log, N) (i.e., Buneman’s algorithm) are the most
accurate in each case. (Here truncated arithmetic was used.) For fixed I, including
I = 0 (the basic FFT algorithm), the errors are roughly proportional to ik’g. For
Buneman’s algorithm (which does not use the FFT), however; the errors are roughI;;
proportional to N2!3.

In the Karlsruhe version of PSOLVE, the algorithm of Cooley, Lewis, and Welch [3]
was used to convert real sine transforms of length N into complex transforms of
length Nj2. Since the sine transform is its own inverse (apart from a scaling factor),
one can alternatively “‘invert” their algorithm and it turns out that by doing so the
round-off error is considerably reduced. The reason is probably that the original
algorithm involves a multiplication by l/(sin(j,/N)), which is large for small j; in the
inverted form this becomes a multiplication by sin(jr/N). The version of PSOLVE
given in [16] uses the new version of the sine transform, an outline of which is given
in the Appendix to this paper.

326 CLIVE TEMPERTON

TABLE VI

Mean Maximum Error for the N x N Dirichlet Problem”

N

I 8 16 32 64 128

5.68 x 10-l” 1.14 x 10-13 2.10 x IO-15 4.30 x 10-13 8.94 x lo-=
3.38 x lo-l4 7.30 x lo-la 1.22 x 10-13 3.17 x 10-13 5.89 x lo-l3
2.42 x lo-l3 4.73 x 10-14 6.65 x 10-12 2.05 x 10-13 3.81 x lo-l3
2.42 x 10-l” 4.07 x 10-l& 6.59 x 10-l” 1.46 x lo-= 2.85 x lo-l3

- 4.05 x 10-14 6.64 x lo-l4 1.17 x 10-13 2.29 x 10-13
- - 6.73 x 10-r* 1.11 x 10-13 1.92 x 10-13
- 1.14 x 10-13 1.79 x 10-13
- - - - 1.71 x 10-18

U CYBER-175, new version of sine transform, truncated arithmetic.

Following this discovery, the accuracy experiments described above were repeated;
the results are presented in Table VI. For I = log, N (Buneman’s algorithm), the
results are of course the same as before. Otherwise (apart from N = 8, I = 0, and
I = 1) the errors are reduced; for N = 128, I = 0 there is an order of magnitude
reduction. For fixed 1, the errors are now roughly proportional to N.

TABLE VII

Mean Maximum Error for the N x N Dirichlet Problem=

N

I 8 16 32 64 128

0 2.33 x lo-l4 5.84 x 10-l* 1.18 x lo-=
1 1 97

1:67
x 10-l” 5.33 x 10-12 9.45 x 10-l’

2 x lo-la 4.48 x 10-l” 7.53 x 10-I”
3 1.49 x IO-IA 4.12 x 10-l” 7.37 x 10-I”
4 - 4.01 x 10-l& 7.20 x lo-I4
5 7.08 x 10-l”
6
7 -

2.38 x lo-=
1.27 x 10-13
1.05 x 10-13
9.31 x lo-=
1.06 x lo-=
1.04 x 10-13
1.04 x 10-13

-

5.50 x 10-15
3.45 x 10-13
2.82 x lo-=
2.55 x lo-=
2.42 x lo-=
2.17 x lo-=
2.00 x 10-13
1.87 x lo-l5

a CYBER-175, new version of sine transform, rounded arithmetic.

The version of PSOLVE incorporating the new sine transform was also tested on
the CYBER-175 using rounded floating-point arithmetic. The results are shown in
Table VII. It is seen that for Z = 0 the errors are roughly halved by using the rounding
option, while for 1 = log, N the errors are generally similar whichever of the two
options is chosen.

ON THE FACR(E) ALGORITHM 7-P .J.& I

TABLE VIII

Mean Maximum Error for the N x N Dirichlet Problem”

N

i 8 16 32 64 128

0 4.14 x 10-S 7.20 x lo-@ 1.51 x 10-j 2.98 x 10-b 5.99 x lo-"
z 2.53 x 10m6 4.27 x lo-" 1.05 x 10-S 2.00 x 10-S 3.38 x 10-j
2 2.56 x lo-$ 4.05 x 1O-6 8.98 x 10-s I.41 x 10-S 2.57 x 10-j
3 2.54 x 10-B 3.82 x 1O-6 8.08 x 1O-s I.30 x 10-s 2.44 x IO-5
4 3.86 x lo-" 7.87 x lO-6 1.28 x 10-S 2.35 x 10-5
5 8.12 x 10-G 1.33 :: 10-j 2.41 x 30-b
6 - 1.37 x IG-" 2.52 x IO-"
7 - - - 2.58 :< ;o-"

fl IBM 360:‘195, neiv version of sine transform, truncated arithmetic.

Only the new version of PSOLVE was tested on the IBM 360/195; the resul?s are
presented in Table VIII. The errors are of course much larger, because of the differenca
in word length. (The mantissa of a single-precision floating-point number contains
24 bits on IBM machines, compared with 48 bits on CDC machines, and rounded
floating-point arithmetic is not available as an option when compiling FORTRAN.)
Again, for fixed 1 the error is roughly proportional to N.

Comparing the results of Table VIII with those of Table V of [18] for COXC-
sponding Assembler programs on an IBM 360/195, the decreased errors for FACR(C)
reflect the improved sine transform used in PSOLVE, More surprisingly, the errors
for PSOLVE with I = log, N are also considerably smaller than for the Assembler
program implementing Buneman’s algorithm. The reason may be that this algorithm
consists largely of solving systems of the form

and the two programs solve such systems using the hi‘s in a different order. Schumarrn
[l I] pointed out the need for research into the dependence of round-off errors on the
spectrum of the right-hand side of Poisson’s equation; from the above result, it
appears that the question of round-off errors in Poisson-solvers may be even more
involved.

6. GENERALIZATIONS

The FACR(I) algorithm developed above solve s the discrete Poisson equation
under a rather restrictive set of conditions; in this final section we irdicate sxw
generalizations.

328 CLIVE TEMPERTON

First, the extension to the case di # fl, is trivial, where di and dj are respectively
the grid lengths in the i and j directions. If N is not a power of 2, then a mixed-radix
FFT [13, 171 must be used (for efficiency, N should be a product of small primes).
The FACR(Z) algorithm described above only requires that M be a multiple of 2z;
for arbitrary M, a generalized form of block-cyclic reduction is available [12, 151.
Other boundary conditions at i = 0, N can be incorporated by adding extra pre-
processing and postprocessing options to the FFT [3, 141, and at j = 0, hl by modi-
fying the block-cyclic reduction process appropriately [2].

As mentioned at the end of Section 3, the FACR(I) algorithm based on Variant 1
of Buneman’s algorithm requires (for 1 > 0) an auxiliary array of dimension approxi-
mately MN/2 even if the solution overwrites the right-hand side. If storage is so
restricted that this is undesirable, then the version of the FACR(1) algorithm presented
by Swarztrauber [14] and based on Variant 2 of Buneman’s algorithm can be used
instead; the additional computation required is small, especially if Variant 2 is
implemented as suggested in [18].

Finally, the array of coefficients can be eliminated by using alternative methods
(e.g., cyclic reduction) for solving the tridiagonal systems, at the expense of some
extra computation. It has already been shown, however, that for I close to the
optimum value the coefficient array is much smaller than the solution and right-hand
side arrays. As noted in [18], the storage requirement for the coefficients can be
almost halved by using “symmetric” Gaussian elimination [5]; with this modification
available, it appears that using alternative methods for the tridiagonal systems will
seldom be worthwhile.

In this paper we have considered the implementation of the FACR(Z) algorithm
on serial computers; on a parallel or vector computer we must also consider the effect
of the choice of I on the degree of parallelism shown by the algorithm. For instance,
at 1 = 0 the algorithm is highly parallel, since at each stage we are either performing
M - 1 independent sine transforms or solving N - 1 independent tridiagonal
systems. For 1 > 0, the degree of parallelism decreases at each stage of the reduction
process. Thus the optimum value of I is likely to be smaller on parallel and vector
computers than on serial computers.

APPENDIX: AN ALGORITHM FOR THE SINE TRANSFORM

Details of the improved sine transform referred to in Section 5 are given here.

Given xj , 1 < j < N - 1, we wish to compute

N-l

bk = c xj sin(jkrr/N), l,ck<N-1.
j=l

(I) Set y0 = 0,

y.j = sin(jz-/N)(xj + XN-j) + +(Xj - XN+), 1 <j<N-1.

ON THE FACR(z) ALGORITHMS 329

(2) Using a real periodic FFT (if necessary using the algorithm of [3j tG cocvert
to a complex FFT of length N/2), compute

N-l

and

(3) Finally set

and

b SW1 = L, + 2, > l<k < N/2 - 1,

REFERENCES

1. R. E. BANK AND D. J. ROSE, SIAM J. Numer. Anal. 12 (19X), 529-540.
2. la. L. BUZBEE, G. H. GOLUB, AND C. W. NIELSON, SIAM J. Numer. Anal. 7 (1970), 627-656.
3. J. W. COOLEY, P. A. W. LEWIS, AND P. D. WELCH, J. Sound Vib. 12 (1970), 315-337.
4. F. W. DORR, SIAM Rev. 17 (1975), 412-415.
4. D. J. EVANS AND M. HATZOPOULOS, Cornput. J, 19(1976), 184-187.
6. R. W. HOCKNEY, J. Assoc. Cornput. Mach. 12 (1965), 95-113.
7. R. W. HOCKNEY, The potential calculation and some applications, irr “Methods of Computation&E

Physics” (IX. Alder, S. Fernbach, and M. Rotenberg, Eds.), Vol. 9, pp. L35-ill? Academic Press,
New York, 1970.

8. R. W. HOCKNEY, Computers, compilers and Poisson-solvers, in “Computers, Fast Elliptic
Solvers and Applications (U. Schumann, Ed.), Advance Publications, London, 1978,

9. E. N. LORENZ, Mon. Wea. Rev. 104 (1976), 961-966.
10. J. SCHR~DER, U. TROTTENBERG, AND H. REUTERSBERG, m<rtier. Math. 26 (1976), 429-459.
1 i. U. SCHUMANN, Report on the GAMM Workshop on fast sol&ion methods for the discretized

Poisson equation, in “Computers, Fast Elliptic Solvers and Applications” (U. Schumann, Ed.),
Advance Publications, London, 1978.

12. U. SCHUMANN AND R. A. SWEET, J. Compufational Physics 20 (1976), I71-152.
13. R. C. SINGLETON, IEEE Trans. Audio Electroacoustics 17 (1969), 93-103.
14. P. N. SWARZTRAUBER, SZAM Rev. 19 (1977), 49&501.
15. R. A. SWEET, SIAM, Numer. Anal. 14 (1977), 706-720.
16. C. TEMPERTON, “On the FACR (I) Algorithm for the Discrete Poisson Equation,” ECMWF

Research Department Internal Report No. 14, 1977.
17. C. TEMPERTON, “Mixed-Radix Fast Fourier Transforms without Reordering,” ECMWF

Technical Report No. 3, 1977.
18. C. TEMPERTON, J. Computational Physics 31 (1979): l-20.

